Did | forget to hit

record? Please
remind me!

|

N\

¢

@)
|

Reinforcement Learning
for Algorithms

MIE1666: Machine Learning for Mathematical Optimization

Based in part on Mazyavkina, Nina, et al. "Reinforcement learning for combinatorial optimization:
A survey." Computers & Operations Research (2021): 105400.

Based in part on Introduction to Reinforcement Learning with David Silver, https://deepmind.com/
learning-resources/-introduction-reinforcement-learning-david-silver

UNIVERSITY OF

NG
7'.' \‘(
A A
lll(\’-. -:’.:: T O RO N TO
\-".:'_.; R '\':} !
| ARBOR.

Elias B. Khalil — 01/11/21

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
L About RL

Characteristics of Reinforcement Learning

What makes reinforcement learning different from other machine
learning paradigms?

m [here is no supervisor, only a reward signal
m Feedback Is delayed, not instantaneous
m Time really matters (sequential, non i.i.d data)

m Agent's actions affect the subsequent data it receives

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
L The RL Problem
I—Reward

Sequential Decision Making

Goal: select actions to maximise total future reward
Actions may have long term consequences

Reward may be delayed

It may be better to sacrifice iImmediate reward to gain more
long-term reward

m Examples:

m A financial investment (may take months to mature)

m Refuelling a helicopter (might prevent a crash in several hours)

m Blocking opponent moves (might help winning chances many
moves from now)

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
L The RL Problem

L Environments

Agent and Environment

s :-_-"'--_‘-:!“-',-_ i
__;,.i:'.';.:T_-“ _-|L-‘: -u._::": _::E
'::f_#f i | ' e 1 "y
aTc1 £ iy
observation ﬁ (1 N b g PRS action
o . N '
o, | A m At each step t the agent:

m Executes action A;
m Receives observation O,
m Receives scalar reward R;

m | he environment:

m Receives action A;
m Emits observation O;1
m Emits scalar reward R,

m t Increments at env. step

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
L The RL Problem
L State

History and State

m [he history is the sequence of observations, actions, rewards
Ht — 017 R17 A17 e At—17 Ot7 Rt

m i.e. all observable variables up to time t

m i.e. the sensorimotor stream of a robot or embodied agent

m What happens next depends on the history:

m [he agent selects actions
m The environment selects observations/rewards

m State is the information used to determine what happens next

m Formally, state is a function of the history:
St — f(Ht)

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
L The RL Problem
L State

Environment State

observation action m | he environment state Ste IS
0, A the environment’s private
representation

m I.e. whatever data the
environment uses to pick the
next observation /reward

m [he environment state Is not
usually visible to the agent

\03030330303330003012000 1 735

WS 010101111000301000301011 1
\ 1103000303030003010103 01010

M i m Even if Sf IS ViSib|e, It may
N oo, 2 L

contain irrelevant
iInformation

¥ gk

Lt [0 M o
- il
e
~ NN R
R g

- - <
Y : .
SRSLas €
. B—— -
- —— -
. —

environment state S‘{:‘

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
L The RL Problem
L State

Agent State

The agent state 57 is the
agent's internal
g . A representation

: 4N o0110301330303330001011000)) -
observation P ;010111000101000101, 011 1 T A action
A4 R "y

110300010101000301010101010(

- (Ve) m i.e. whatever information
: SOy ’ :

D the agent uses to pick the
next action

agent state S?

m i.e. it is the information
used by reinforcement
learning algorithms

m It can be any function of
history:

; = f(H)

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
L The RL Problem
L sState

Information State

An information state (a.k.a. Markov state) contains all useful
information from the history.

A state S; is Markov if and only if

P[St+1 | St = P[St41 | S1,-05 St

m The future is independent of the past given the present”
Hl:t — St —7 Ht—l—l:oo

Once the state is known, the history may be thrown away
i.e. The state is a sufficient statistic of the future
The environment state Sf is Markov

The h istory Ht Is Markov Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
L The RL Problem
L sState

Fully Observable Environments

,ﬂf:"{“”ﬁ‘““ Full observability: agent directly
2o X ¥ ¥ B ey .
Ctate A0 0TS action observes environment state
Lok, ¥ T W
5t ;r'_J W D O ¢ F- Ar a e
NSy 9 0; = 57 = S

m Agent state = environment
state = information state

m Formally, this is a Markov
decision process (MDP)

m (Next lecture and the
majority of this course)

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
L Inside An RL Agent

Major Components of an RL Agent

m An RL agent may include one or more of these components:

m Policy: agent’'s behaviour function
m Value function: how good is each state and/or action
m Model: agent’s representation of the environment

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
L Inside An RL Agent

Policy

m A policy Is the agent’'s behaviour
m It is a map from state to action, e.g.
m Deterministic policy: a = 7(s)

m Stochastic policy: w(a|s) = P[A; = a|5; = 5]

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
L Inside An RL Agent

Value Function

m Value function is a prediction of future reward
m Used to evaluate the goodness/badness of states

m And therefore to select between actions, e.g.

vr(s) = Ex [Rt+1 + YRiso + YV Res3 + ... S = 5}

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
L Inside An RL Agent

Model

m A model predicts what the environment will do next
m P predicts the next state

m R predicts the next (immediate) reward, e.g.

7)535/ — P[St_|_1 — S, ‘ 51_- — S,At — 3]
R =E[Ret1 | St =5, Ar = 3]

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
I—Inside An RL Agent

Maze Example

Start
m Rewards: -1 per time-step

m Actions: N, E, S, W

m States: Agent's location

Goal

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
I—Inside An RL Agent

Maze Example: Policy

Start

m Arrows represent pOhCy 77(5) for each state s Introduction to Reinforcement Learning with David Silver,

https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

1o

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
I—Inside An RL Agent

Maze Example: Value Function

Start

23 | 22 | 21 | -22 2 | -1 | Goal

O N um bers represent Vd l uc VW(S) Of eaCh state]ntroduction to Reinforcement Learning with David Silver,

https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

10

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
I—Inside An RL Agent

Maze Example: Model

model of the environment

m Agent may have an internal
EIE}

m Dynamics: how actions
change the state

-1
m Rewards: how much reward

| from each state
1 1 | Goal

m [he model may be imperfect

m Grid layout represents transition model PZ,

B Numbers represent immediate reward RZ from each state s

(same for all a)

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning Lecture 1: Introduction to Reinforcement Learning
I—Inside An RL Agent I—Inside An RL Agent

Categorizing RL agents (1) Categorizing RL agents (2)

m Value Based

O] m Model Free

m Value Function m Policy and/or Value Function

m Policy Based .

m Policy @ Model Based

- m Policy and/or Value Function
m Actor Critic m Model

m Policy

m Value Function

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

18

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
L Problems within RL

Learning and Planning

Two fundamental problems in sequential decision making

m Reinforcement Learning:

m [he environment is initially unknown
m [he agent interacts with the environment
m [he agent improves its policy

m Planning:

m A model of the environment is known

m The agent performs computations with its model (without any
external interaction)

m [he agent improves its policy

m a.k.a. deliberation, reasoning, introspection, pondering,
thought, search

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning

L Preblems within Bl

Atari Example: Reinforcement Learning

il N o Wy,
b e N) B B
- l,.-.-l: - \'I,-f'__h“‘i | f -\.“."H- et .l'l.l]
observation (f I~ Ne b F L * A action
'.lI I 1 it { [|
."l: 1 A 'w.-"-:_ +"i‘.:-_.__,.___ #
Ay N N | L *’j
Ot . g " L ! . 1 : -\.._'-_i-:_.-" b At
A e T Y g T —

m Rules of the game are
unknown

m Learn directly from
interactive game-play

m Pick actions on
Joystick, see pixels
and scores

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

ZU

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
L Problems within RL

Atari Example: Planning

m Rules of the game are known
m Can query emulator

m perfect model inside agent’s brain

m If | take action a from state s:

m what would the next state be?
m what would the score be?

left right

m Plan ahead to find optimal policy
m e.g. tree search ° ¢ e .

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

Z |

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
L Problems within RL

Exploration and Exploitation (1)

m Reinforcement learning is like trial-and-error learning
m [he agent should discover a good policy
m From its experiences of the environment

m Without losing too much reward along the way

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

ZZ

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Lecture 1: Introduction to Reinforcement Learning
L Problems within RL

Exploration and Exploitation (2)

m Exploration finds more information about the environment
m Exploitation exploits known information to maximise reward

m It i1s usually important to explore as well as exploit

Introduction to Reinforcement Learning with David Silver,
https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver

9

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver

Combinatorial Optimization Problem

SCN

min{zjescj : Se]—“}

N =1{1,...,n} is a finite set,
c; € R 1s a weight for each j € NV,
JF 1s a set of feasible subsets of V.

Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
fire stations, a station can service those regions for which a fire engine is guaran-
teed to arrive on the scene of a fire within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

TI}flCl]I\l, 2 jer G - UjerS; = M

M ={1,..., M} is the set of regions,
N ={1,...,n} is the set of potential centers,
c; € R™ is the per-region installation cost.

25

Nearest Neighbour heuristic for the TSP:

e always choose at the current city the closest unvisited city @
— choose an arbitrary initial city 7 (1)

— at the ith step choose city (7 + 1) to be the city j that
minimises {d(7(z),7)}; 7 #w(k),1 <k <1

e running time O(n?)

e worst case performance
NN (x)/OPT(x) <0.5(|loggn| + 1)

e oOther construction heuristics for TSP are available

Hoos / Stiitzle Stochastic Search Algorithms
26

36

Nearest Neighbour heuristic for the TSP:

e always choose at the current city the closest unvisited city
— choose an arbitrary initial city 7 (1)

— at the ¢th step choose city (7 + 1) to be the city j that
minimises {d(7(¢),7)}; 7 # m(k),1 <k <1

Iterative Improvement for the TSP

e 1nitial solution 1s a complete tour

e k-opt neighbourhood: solutions which differ by at most £

edges
® 2-opt .
/ .\‘/ \\\ / .\./
K \\\//O\‘ K .\.
AV /
\ 0//// \\\. \ o - ®
c/ 0/ N

e neighbourhood size O(n*) o7

Nearest Neighbour heuristic for the TSP:
Definition 2. MDP can be defined as a tuple M = (S, A,R,T,y, H),

where e always choose at the current city the closest unvisited city

: : C. — choose an arbitrary initial city (1
* S - state space s, € S. State space for combinatorial optimization y y (1)

problems in this survey is typically defined in one of two ways. — at the ith step choose city 7(i 4 1) to be the city j that
One group of approaches constructs solutions incrementally de- minimises {d(7(2),7)}; 5 £ w(k),1 <k <1
fine it as a set of partial solutions to the problem (e.g. a partially

. . 2
constructed path for TSP problem). The other group of methods e running time O(n”)

starts with a suboptimal solution to a problem and iteratively e worst case performance
improves it (e.g. a suboptimal tour for TSP). NN (2)/OPT(z) < 0.5([logyn] + 1)
* A - action space a, € A. Actions represent addition to partial or -
changing complete solution (e.g. changing the order of nodes in e other construction heuristics for TSP are available

a tour for TSP);

* R - reward function is a mapping from states and actions into real
numbers R : S X A— R. Rewards indicate how action chosen
in particular state improves or worsens a solution to the problem
(i.e. a tour length for TSP);

T - transition function T(s,,|s,,a,) that governs transition dynam-
ics from one state to another in response to action. In combinato-
rial optimization setting transition dynamics is usually determin-
istic and known in advance;

 y - scalar discount factor, 0 < y < 1. Discount factor encourages
the agent to account more for short-term rewards;

« H - horizon, that defines the length of the episode, where episode o
is defined as a sequenc.e {st., at,st+1,at+1,st+2i...}fio. For I.neth- o argmaXE[z Y R(s,)], 1)
ods that construct solutions incrementally episode length is de- r pr
fined naturally by number of actions performed until solution is
found. For iterative methods some artificial stopping criteria are
introduced.

Hoos / Stiitzle Stochastic Search Algorithms

The goal of an agent acting in Markov Decision Process is to find a
policy function n(s) that maps states into actions. Solving MDP means
finding the optimal policy that maximizes the expected cumulative
discounted sum of rewards:

Mazyavkina, Nina, et al. "Reinforcement learning for
o8 combinatorial optimization: A survey." Computers &
Operations Research (2021): 105400.

N. Mazyavkina et al. Computers and Operations Research 134 (2021) 105400

RL Algorithm MDP

Agent

States/Rewards Actions

L.':i.:g.".lll‘.z

Softmax

Problem Environment

Fig. 1. Solving a CO problem with the RL approach requires formulating MDP. The environment is defined by a particular instance of CO problem (e.g. Max-Cut problem).
States are encoded with a neural network model (e.g. every node has a vector representation encoded by a graph neural network). The agent is driven by an RL algorithm
(e.g. Monte-Carlo Tree Search) and makes decisions that move the environment to the next state (e.g. removing a vertex from a solution set).

29

Greedy Graph Optimization

Minimum Vertex Cover
Find smallest vertex subset such that each edge Iis covered

2-Approximation:
Greedily add vertices of edge
with max degree sum

30

Learning Combinatorial Optimization Algorithms over Graphs

Hanjun Dai'*, Elias B. Khalil'*, Yuyu Zhang', Bistra Dilkina', Le Song'>
I College of Computing, Georgia Institute of Technology
3 Ant Financial
{hanjun.dai, elias.khalil, yuyu.zhang, bdilkina, Isong } @cc.gatech.edu

NeurlPS 2017

31

Problem Statement

Dai & Khalil et al., Learning Combinatorial Optimization Algorithms over Graphs. NeurlPS 2017.

Given a graph optimization problem G
and a distribution D of problem instances,
can we learn better greedy heuristics that

generalize to unseen instances from D?

Learning Greedy Heuristics

Given: graph problem, family of graphs

Learn: a scoring function to guide a greedy algorithm

Problem Minimum Vertex Cover Maximum Cut Traveling Salesman Problem
Domain Social network snapshots Spin glass models Package delivery
Greedy operation | Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour

N A S —
\./.25%5 o o

33

Reinforcement Learning

Greedy Algorithm Reinforcement Learning

State
Q-function

Partial solution

Scoring function

Select best node Greedy Policy

Repeat until all edges are covered:
1. Compute node scores

2. Select best node w.r.t. score
3. Add best node to partial sol.

34

Representing Nodes

» Action value function: 0(S,, v; ©)
» Estimate of goodness of vertex v in state S;

 Representation of v
» A feature vector that describes v in state §;

Ao ___@I
-

. a

Nl

35

N2

Representing Nodes

» Action value function: 0(S,, v; ©)
» Estimate of goodness of vertex v in state S;

* Representation of v: Feature engineering
* Degree, 2-hop neighborhood size, other centrality measures...

36

Representing Nodes

» Action value function: 0(S,, v; ©)
» Estimate of goodness of vertex v in state S;

* Representation of v: Feature engineering
* Degree, 2-hop neighborhood size, other centrality measures...

~ ~ ("
PROBLEMS

1- Task-specific engineering needed
2- Hard to tell what is a good feature
3- Difficult to generalize across diff. graph sizes

e al

36

Learning Node Features

Scoring Function: Need to represent node with a feature vector first

Learning Node Features

Scoring Function: Need to represent node with a feature vector first

Problem: Not clear what good node features are!

37

Learning Node Features

Scoring Function: Need to represent node with a feature vector first
Problem: Not clear what good node features are!

Solution: Parametrize a Graph Neural Network with parameters (5

37

Learning Node Features

Scoring Function: Need to represent node with a feature vector first
Problem: Not clear what good node features are!

Solution: Parametrize a Graph Neural Network with parameters (5
V

= s s B — [|

SOLUTION

1- No feature engineering needed }
2- Features’ parameters trained to be good

J 3- Can handle different graph sizes

. a

.

37

Reinforcement Learning Algorithm

Algorithm 1 Q-learning for the Greedy Algorithm @ * Mo d e | param eters
I: Initialize experience replay memory /M to capacity N Depend on vertex features
2: forepisodee = 1to L do ,
3: Draw graph G from distribution D Sample graph instance
4: Initialize the state to empty S = ()
5. forstept =1to1 do B
. ~ [randomnode v € S, W.D. € Explore or
. U = argmax, g Q(h(S;),v; ©), otherwise Exploit according to current policy
7: Add vy to partial solution: Sy 1 = (S¢, v¢) Update state
8: if £ > n then
9: Add tllpl@ (St—na Vt—n, Rt—n,ta St) to M
10: Sample random batch from B "M o
11: Update © by SGD over (6) for B Optimize model parameters
12: end if ~
13: end for (y _AQ(h(St)avﬁ 9))”
14: end for y = ymax, Q(h(Sii1),v;0) + r(St, vp)

15: return ©

33

Overall Framework

Embed) 0 Greedy: add

graph @ O best node

h 5 -~ O * - O : , A 1stiteration
0. 7% o I

Embed © D Greedy: add
graph e O A O - best node /O
mp o g e [e g ([0 -| mp o ‘%
\ j
I | I | | |
State Embedding the graph + partial solution Greedy node selection

39

edar

N
V

1.6/ mmm S2V-DQN

= vAC EX COVER
15 . MVCApprox _ |
| mmm MVCApprox-Greed

=
IN

Approximation ratio to optimal
= =
N w

=
=

1.0

15-20 40-50 50-100 100-200

Number of nodes in train/test graphs

400-500

dy in Practice

Approximation ratio to optimal

[E]
=

=
o

S2V-DQN
PN-AC
SDP

15-20

MaxcutApprox

40-50

MAX-CUT
‘ L

50-100 100-200 200-300
Number of nodes in train/test graphs

S2V-DQN
2-opt

PN-AC
Cheapest
Christofides
Closest
Nearest
MST

1.4;

Approximation
Ratio

1.2;

Approximation ratio to optimal

1.0-

15-20

40-50
Number of nodes in train/test graphs

50-100

100-200

TSP

Code: https://

github.com/Hanjun-

Dai/graph comb opt

200-300

https://github.com/Hanjun-Dai/graph_comb_opt
https://github.com/Hanjun-Dai/graph_comb_opt

Data-Driven Algorithm Design
automatically discovers

novel searcn strategies

Learned HeuristiC [. al He 5
0 /
—

Minimum
Vertex Cover
FINnd smallest
vertex subset

such that each
edge Is covered

Data-Driven Algorithm Design
automatically discovers

novel searcn strategies

Learned HeuristiC [. al He 5
0 /
—

Minimum
Vertex Cover
FINnd smallest
vertex subset

such that each
edge Is covered

Embed g — 0] e—-ye) A Greedy: add
graph @) A O - | best node
C » E O O . E—’j—' O O %Lu[—“/]—’[@]_‘. O _ - 1stjteration
% O@ .'E O 0. (
T J
:—0] ﬂ:l—ﬁ]f A Greedy: add
’ O ‘ O - | best node QO
g RelLu E—/}O 8 %Lu[—/]—‘[(r)]—‘l - - (‘% 2" jteration
) D
| | | | | |
State Embedding the graph + partial solution Greedy node selection

42

LELGEVVENE
i » Reinforcement Learning tailors greedy search to your
INnstances

i » |Learn features jointly with greedy policy

‘ » Human priors encoded via (greedy) meta-algorithm

‘ » Interesting, novel strategies emerge

Greedy: add

- best node
| ~ - | 1t jteration

Greedy: add
best node

State Embedding the graph + partial solution Greedy node selection
42

Learning Heuristics: Recent progress

Published as a conference paper at ICLR 2019

ATTENTION, LEARN TO SOLVE ROUTING PROBLEMS!

Wouter Kool
University of Amsterdam
ORTEC

w.w.m.koollduva.nl

Herke van Hoof
University of Amsterdam
h.c.vanhoofduva.nl

Max Welling

University of Amsterdam
CIFAR
m.welling@uva.nl

43

~ @ ©® © ©
y (N
1 |o
MHA
o F
. / \ b, / ‘-- = ,.: 4 r NX Projection
FF ! I I l v Skip connection
—]_ J v Attention query
-1 ®©-0+-0- -

Figure 1: Attention based encoder. Input nodes
are embedded and processed by N sequential
layers, each consisting of a multi-head attention
(MHA) and node-wise feed-forward (FF) sub-
layer. The graph embedding is computed as the
mean of node embeddings. Best viewed in color.

Learning Heuristics: Recent progress

Reinforcement Learning for Solving the Combinatorial Optimization with Graph
Vehicle Routing Problem Convolutional Networks and Guided Tree Search
Mohammadreza Nazari Afshin Oroojlooy Martin Taka¢c Lawrence V. Snyder Llnliu‘lw I::nbLi Qiﬁ;%g{_len Vla[dlte:llf(gltun
Department of Industrial and Systems Engineering i et Labs
Lehigh University, Bethlehem, PA 18015

{mon314 ,afo214,takac,lvs2}@lehigh. edu Not leaf
! o Graph o .- ROR. =y Local : | Choose
' . Reduction ’ . ~ N Search the best

Input éraph Reduced‘Graph : :
Guided Tree Search

44

Learning Heuristics: Recent progress

Learning Scheduling Algorithms for Data Processing Clusters

Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng*, Mohammad Alizadeh
MIT Computer Science and Artificial Intelligence Laboratory *Tsinghua University

l Reward
State Scheduling Agent Schedulable \ Objective I
\ -\ Nodes Environment

okt Policy | J\7
Neural ~ 7~

JobDAG1 JobDAGN[—¥ oo = [+ Network SpOf K

— (§5.1) 552 @
T, J - T, J ’
@ A R O
Executor 1 Executor m

T Observation of jobs and cluster status

45

Learning Heuristics: Recent progress

Learning to Perform Local Rewriting for
Combinatorial Optimization

Xinyun Chen * Yuandong Tian
UC Berkeley Facebook Al Research
xinyun.chen@berkeley.edu yuandong@fb.com
St St+1
(?urrent S'.cate Region-Picker Rule-Picker —
(i.e. Solution) u;
St > @, ~ 1, (0 |s) — U ~ (- |se [w,]) il N
t :
S:;| W
Sts1 = f(Sp @, u,) < | : t| @] |

46

