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Lecture 1: Introduction to Reinforcement Learning

About RL

Characteristics of Reinforcement Learning

What makes reinforcement learning di↵erent from other machine
learning paradigms?

There is no supervisor, only a reward signal

Feedback is delayed, not instantaneous

Time really matters (sequential, non i.i.d data)

Agent’s actions a↵ect the subsequent data it receives

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

The RL Problem

Reward

Sequential Decision Making

Goal: select actions to maximise total future reward

Actions may have long term consequences

Reward may be delayed

It may be better to sacrifice immediate reward to gain more
long-term reward

Examples:
A financial investment (may take months to mature)
Refuelling a helicopter (might prevent a crash in several hours)
Blocking opponent moves (might help winning chances many
moves from now)

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

The RL Problem

Environments

Agent and Environment

observation

reward

action

At

Rt

Ot At each step t the agent:
Executes action At

Receives observation Ot

Receives scalar reward Rt

The environment:
Receives action At

Emits observation Ot+1

Emits scalar reward Rt+1

t increments at env. step

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

The RL Problem

State

History and State

The history is the sequence of observations, actions, rewards

Ht = O1,R1,A1, ...,At�1,Ot ,Rt

i.e. all observable variables up to time t

i.e. the sensorimotor stream of a robot or embodied agent

What happens next depends on the history:
The agent selects actions
The environment selects observations/rewards

State is the information used to determine what happens next

Formally, state is a function of the history:

St = f (Ht)

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

The RL Problem

State

Environment State

observation

reward

action

At

Rt

Ot

St
eenvironment state

The environment state Se
t is

the environment’s private
representation

i.e. whatever data the
environment uses to pick the
next observation/reward

The environment state is not
usually visible to the agent

Even if Se
t is visible, it may

contain irrelevant
information

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

The RL Problem

State

Agent State

observation

reward

action

At

Rt

Ot

St
aagent state

The agent state Sa
t is the

agent’s internal
representation

i.e. whatever information
the agent uses to pick the
next action

i.e. it is the information
used by reinforcement
learning algorithms

It can be any function of
history:

Sa
t = f (Ht)

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

The RL Problem

State

Information State

An information state (a.k.a. Markov state) contains all useful
information from the history.

Definition

A state St is Markov if and only if

P[St+1 | St ] = P[St+1 | S1, ..., St ]

“The future is independent of the past given the present”

H1:t ! St ! Ht+1:1

Once the state is known, the history may be thrown away
i.e. The state is a su�cient statistic of the future
The environment state Se

t is Markov
The history Ht is Markov Introduction to Reinforcement Learning with David Silver, 

https://deepmind.com/learning-resources/-introduction-
reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

The RL Problem

State

Fully Observable Environments

state

reward

action

At

Rt

St

Full observability: agent directly
observes environment state

Ot = Sa
t = Se

t

Agent state = environment
state = information state

Formally, this is a Markov
decision process (MDP)

(Next lecture and the
majority of this course)

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Major Components of an RL Agent

An RL agent may include one or more of these components:
Policy: agent’s behaviour function
Value function: how good is each state and/or action
Model: agent’s representation of the environment

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Policy

A policy is the agent’s behaviour

It is a map from state to action, e.g.

Deterministic policy: a = ⇡(s)

Stochastic policy: ⇡(a|s) = P[At = a|St = s]

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Value Function

Value function is a prediction of future reward

Used to evaluate the goodness/badness of states

And therefore to select between actions, e.g.

v⇡(s) = E⇡
⇥
Rt+1 + �Rt+2 + �2Rt+3 + ... | St = s

⇤

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Model

A model predicts what the environment will do next

P predicts the next state

R predicts the next (immediate) reward, e.g.

Pa
ss0 = P[St+1 = s 0 | St = s,At = a]

Ra
s = E [Rt+1 | St = s,At = a]

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example

Start

Goal

Rewards: -1 per time-step

Actions: N, E, S, W

States: Agent’s location

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example: Policy

Start

Goal

Arrows represent policy ⇡(s) for each state s Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example: Value Function

-14 -13 -12 -11 -10 -9

-16 -15 -12 -8

-16 -17 -6 -7

-18 -19 -5

-24 -20 -4 -3

-23 -22 -21 -22 -2 -1

Start

Goal

Numbers represent value v⇡(s) of each state sIntroduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver


17

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Maze Example: Model

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1

-1

-1 -1

-1 -1

Start

Goal

Agent may have an internal
model of the environment

Dynamics: how actions
change the state

Rewards: how much reward
from each state

The model may be imperfect

Grid layout represents transition model Pa
ss0

Numbers represent immediate reward Ra
s from each state s

(same for all a)
Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Categorizing RL agents (1)

Value Based
No Policy (Implicit)
Value Function

Policy Based
Policy
No Value Function

Actor Critic
Policy
Value Function

Lecture 1: Introduction to Reinforcement Learning

Inside An RL Agent

Categorizing RL agents (2)

Model Free
Policy and/or Value Function
No Model

Model Based
Policy and/or Value Function
Model

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Learning and Planning

Two fundamental problems in sequential decision making

Reinforcement Learning:
The environment is initially unknown
The agent interacts with the environment
The agent improves its policy

Planning:
A model of the environment is known
The agent performs computations with its model (without any
external interaction)
The agent improves its policy
a.k.a. deliberation, reasoning, introspection, pondering,
thought, search

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Atari Example: Reinforcement Learning

observation

reward

action

At

Rt

Ot
Rules of the game are
unknown

Learn directly from
interactive game-play

Pick actions on
joystick, see pixels
and scores

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Atari Example: Planning

Rules of the game are known

Can query emulator
perfect model inside agent’s brain

If I take action a from state s:
what would the next state be?
what would the score be?

Plan ahead to find optimal policy
e.g. tree search

right left

right rightleft left

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver


22

Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Exploration and Exploitation (1)

Reinforcement learning is like trial-and-error learning

The agent should discover a good policy

From its experiences of the environment

Without losing too much reward along the way

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 
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Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Exploration and Exploitation (2)

Exploration finds more information about the environment

Exploitation exploits known information to maximise reward

It is usually important to explore as well as exploit

Introduction to Reinforcement Learning with David Silver, 
https://deepmind.com/learning-resources/-introduction-

reinforcement-learning-david-silver 

https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver


Combinatorial Optimization Problem

24

min
S✓N

(
P

j2S cj : S 2 F
)

N = {1, . . . , n} is a finite set,
cj 2 R is a weight for each j 2 N ,
F is a set of feasible subsets of N .



Set Covering Problem
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min
T✓N

(
P

j2T cj : [j2TSj = M

)

M = {1, . . . ,M} is the set of regions,
N = {1, . . . , n} is the set of potential centers,
cj 2 R+ is the per-region installation cost.

!

! !

!

6 1 Formulations

The 0–1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where aj is the outlay for project j and cj is
its expected return. The goal is to choose a set of projects so that the budget is not
exceeded and the expected return is maximized.

De!nition of the variables.
xj = 1 if project j is selected, and xj = 0 otherwise.

De!nition of the constraints.
The budget cannot be exceeded:

n∑
j=1

ajxj ≤ b.

The variables are 0–1:

xj ∈ {0, 1} for j = 1,… ,n.

De!nition of the objective function.
The expected return is maximized:

max
n∑

j=1
cjxj.

The Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
!re stations, a station can service those regions for which a !re engine is guaran-
teed to arrive on the scene of a !re within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

First, we can formulate it as a more abstract COP. Let M = {1,… ,m} be the set
of regions, and N = {1,… ,n} the set of potential centers. Let Sj ⊆ M be the regions
that can be serviced by a center at j ∈ N and cj its installation cost. We obtain the
problem:

min
T⊆N

{∑
j∈T

cj ∶ ∪j∈TSj = M
}

.

Now, we formulate it as a 0–1 IP. To facilitate the description, we !rst construct
a 0–1 incidence matrix A such that aij = 1 if i ∈ Sj and aij = 0, otherwise. Note that
this is nothing but processing of the data.
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Nearest Neighbour heuristic for the TSP:

always choose at the current city the closest unvisited city

– choose an arbitrary initial city

– at the th step choose city to be the city that
minimises

running time

worst case performance

other construction heuristics for TSP are available

Hoos / Stützle Stochastic Search Algorithms 36
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Nearest Neighbour heuristic for the TSP:

always choose at the current city the closest unvisited city

– choose an arbitrary initial city

– at the th step choose city to be the city that
minimises

running time

worst case performance

other construction heuristics for TSP are available

Hoos / Stützle Stochastic Search Algorithms 36

Iterative Improvement for the TSP

initial solution is a complete tour

-opt neighbourhood: solutions which differ by at most
edges

2-opt

neighbourhood size

More complex neighbourhoods: variable depth search

Hoos / Stützle Stochastic Search Algorithms 44
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N. Mazyavkina et al.

In order to apply RL to CO, the problem is modeled as a sequential
decision-making process, where the agent interacts with the environ-
ment by performing a sequence of actions in order to find a solution.
Markov Decision Process (MDP) provides a widely used mathematical
framework for modeling this type of problems (Bellman, 1957).

Definition 2. MDP can be defined as a tuple M = ÍS,A,R, T , � ,HÎ,
where

• S - state space st À S. State space for combinatorial optimization
problems in this survey is typically defined in one of two ways.
One group of approaches constructs solutions incrementally de-
fine it as a set of partial solutions to the problem (e.g. a partially
constructed path for TSP problem). The other group of methods
starts with a suboptimal solution to a problem and iteratively
improves it (e.g. a suboptimal tour for TSP).

• A - action space at À A. Actions represent addition to partial or
changing complete solution (e.g. changing the order of nodes in
a tour for TSP);

• R - reward function is a mapping from states and actions into real
numbers R : S ù A ,,ô R. Rewards indicate how action chosen
in particular state improves or worsens a solution to the problem
(i.e. a tour length for TSP);

• T - transition function T (st+1st, at) that governs transition dynam-
ics from one state to another in response to action. In combinato-
rial optimization setting transition dynamics is usually determin-
istic and known in advance;

• � - scalar discount factor, 0 < � f 1. Discount factor encourages
the agent to account more for short-term rewards;

• H - horizon, that defines the length of the episode, where episode
is defined as a sequence {st, at, st+1, at+1, st+2,…}Ht=0. For meth-
ods that construct solutions incrementally episode length is de-
fined naturally by number of actions performed until solution is
found. For iterative methods some artificial stopping criteria are
introduced.

The goal of an agent acting in Markov Decision Process is to find a
policy function ⇡(s) that maps states into actions. Solving MDP means
finding the optimal policy that maximizes the expected cumulative
discounted sum of rewards:

⇡< = argmax
⇡

E[
H…
t=0

�tR(st, at)], (1)

Once MDP has been defined for a CO problem we need to decide
how the agent would search for the optimal policy ⇡<. Broadly, there
are two types of RL algorithms:

• Value-based methods first compute the value action function
Q⇡ (s, a) as the expected reward of a policy ⇡ given a state s and
taking an action a. Then the agent’s policy corresponds to picking
an action that maximizes Q⇡ (s, a) for a given state. The main
difference between value-based approaches is in how to estimate
Q⇡ (s, a) accurately and efficiently.

• Policy-based methods directly model the agent’s policy as a para-
metric function ⇡✓(s). By collecting previous decisions that the
agent made in the environment, also known as experience, we
can optimize the parameters ✓ by maximizing the final reward
(1). The main difference between policy-based methods is in opti-
mization approaches for finding the function ⇡✓(s) that maximizes
the expected sum of rewards.

As can be seen, RL algorithms depend on the functions that take
as input the states of MDP and outputs the actions’ values or actions.
States represent some information about the problem such as the given
graph or the current tour of TSP, while Q-values or actions are numbers.
Therefore an RL algorithm has to include an encoder, i.e., a function
that encodes a state to a number. Many encoders were proposed for CO

problems including recurrent neural networks, graph neural networks,
attention-based networks, and multi-layer perceptrons.

To sum up, a pipeline for solving CO problem with RL is presented
in Fig. 1. A CO problem is first reformulated in terms of MDP, i.e., we
define the states, actions, and rewards for a given problem. We then
define an encoder of the states, i.e. a parametric function that encodes
the input states and outputs a numerical vector (Q-values or proba-
bilities of each action). The next step is the actual RL algorithm that
determines how the agent learns the parameters of the encoder and
makes the decisions for a given MDP. After the agent has selected an
action, the environment moves to a new state and the agent receives
a reward for the action it has made. The process then repeats from a
new state within the allocated time budget. Once the parameters of the
model have been trained, the agent is capable of searching the solutions
for unseen instances of the problem.

Our work is motivated by the recent success in the application of
the techniques and methods of the RL field to solve CO problems.
Although many practical combinatorial optimization problems can be,
in principle, solved by reinforcement learning algorithms with relevant
literature existing in the operations research community, we will focus
on RL approaches for CO problems. This survey covers the most recent
papers that show how reinforcement learning algorithms can be applied
to reformulate and solve some of the canonical optimization problems,
such as Traveling Salesman Problem (TSP), Maximum Cut (Max-Cut)
problem, Maximum Independent Set (MIS), Minimum Vertex Cover
(MVC), Bin Packing Problem (BPP).

Related work. Some of the recent surveys also describe the in-
tersection of machine learning and combinatorial optimization. This
way a comprehensive survey by Bengio et al. (2020) has summarized
the approaches that solve CO problems from the perspective of the
general ML, and the authors have discussed the possible ways of the
combination of the ML heuristics with the existing off-the-shelf solvers.
Moreover, the work by Zhou et al. (2018), which is devoted to the de-
scription and possible applications of GNNs, has described the progress
on the CO problems’ formulation from the GNN perspective in one of its
sections. Finally, the more recent surveys by Vesselinova et al. (2020)
and Guo et al. (2019), describe the latest ML approaches to solving the
CO tasks, in addition to possible applications of such methods. We note
that our survey is complementary to the existing ones as we focus on
RL approaches, provide necessary background and classification of the
RL models, and make a comparison between different RL methods and
existing solutions.

Paper organization. The remainder of this survey is organized as
follows. In Section 2, we provide a necessary background including the
formulation of CO problems, different encoders, and RL algorithms that
are used for solving CO with RL. In Section 3 we provide a classification
of the existing RL–CO methods based on the popular design choices
such as the type of RL algorithm. In Section 4 we describe the recent
RL approaches for the specific CO problems, providing the details
about the formulated MDPs as well as their influence on other works.
In Section 5 we make a comparison between the RL–CO works and
the existing traditional approaches. We conclude and provide future
directions in Section 6.

2. Background

In this section, we provide definitions of combinatorial problems,
state-of-the-art algorithms and heuristics that solve these problems.
We also describe machine learning models that encode states of CO
problems for an RL agent. Finally, we categorize popular RL algorithms
that have been employed recently for solving CO problems.

Mazyavkina, Nina, et al. "Reinforcement learning for 
combinatorial optimization: A survey." Computers & 

Operations Research (2021): 105400.

Nearest Neighbour heuristic for the TSP:

always choose at the current city the closest unvisited city

– choose an arbitrary initial city

– at the th step choose city to be the city that
minimises

running time

worst case performance

other construction heuristics for TSP are available

Hoos / Stützle Stochastic Search Algorithms 36
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ods that construct solutions incrementally episode length is de-
fined naturally by number of actions performed until solution is
found. For iterative methods some artificial stopping criteria are
introduced.

The goal of an agent acting in Markov Decision Process is to find a
policy function ⇡(s) that maps states into actions. Solving MDP means
finding the optimal policy that maximizes the expected cumulative
discounted sum of rewards:

⇡< = argmax
⇡

E[
H…
t=0

�tR(st, at)], (1)

Once MDP has been defined for a CO problem we need to decide
how the agent would search for the optimal policy ⇡<. Broadly, there
are two types of RL algorithms:

• Value-based methods first compute the value action function
Q⇡ (s, a) as the expected reward of a policy ⇡ given a state s and
taking an action a. Then the agent’s policy corresponds to picking
an action that maximizes Q⇡ (s, a) for a given state. The main
difference between value-based approaches is in how to estimate
Q⇡ (s, a) accurately and efficiently.

• Policy-based methods directly model the agent’s policy as a para-
metric function ⇡✓(s). By collecting previous decisions that the
agent made in the environment, also known as experience, we
can optimize the parameters ✓ by maximizing the final reward
(1). The main difference between policy-based methods is in opti-
mization approaches for finding the function ⇡✓(s) that maximizes
the expected sum of rewards.

As can be seen, RL algorithms depend on the functions that take
as input the states of MDP and outputs the actions’ values or actions.
States represent some information about the problem such as the given
graph or the current tour of TSP, while Q-values or actions are numbers.
Therefore an RL algorithm has to include an encoder, i.e., a function
that encodes a state to a number. Many encoders were proposed for CO

problems including recurrent neural networks, graph neural networks,
attention-based networks, and multi-layer perceptrons.

To sum up, a pipeline for solving CO problem with RL is presented
in Fig. 1. A CO problem is first reformulated in terms of MDP, i.e., we
define the states, actions, and rewards for a given problem. We then
define an encoder of the states, i.e. a parametric function that encodes
the input states and outputs a numerical vector (Q-values or proba-
bilities of each action). The next step is the actual RL algorithm that
determines how the agent learns the parameters of the encoder and
makes the decisions for a given MDP. After the agent has selected an
action, the environment moves to a new state and the agent receives
a reward for the action it has made. The process then repeats from a
new state within the allocated time budget. Once the parameters of the
model have been trained, the agent is capable of searching the solutions
for unseen instances of the problem.

Our work is motivated by the recent success in the application of
the techniques and methods of the RL field to solve CO problems.
Although many practical combinatorial optimization problems can be,
in principle, solved by reinforcement learning algorithms with relevant
literature existing in the operations research community, we will focus
on RL approaches for CO problems. This survey covers the most recent
papers that show how reinforcement learning algorithms can be applied
to reformulate and solve some of the canonical optimization problems,
such as Traveling Salesman Problem (TSP), Maximum Cut (Max-Cut)
problem, Maximum Independent Set (MIS), Minimum Vertex Cover
(MVC), Bin Packing Problem (BPP).

Related work. Some of the recent surveys also describe the in-
tersection of machine learning and combinatorial optimization. This
way a comprehensive survey by Bengio et al. (2020) has summarized
the approaches that solve CO problems from the perspective of the
general ML, and the authors have discussed the possible ways of the
combination of the ML heuristics with the existing off-the-shelf solvers.
Moreover, the work by Zhou et al. (2018), which is devoted to the de-
scription and possible applications of GNNs, has described the progress
on the CO problems’ formulation from the GNN perspective in one of its
sections. Finally, the more recent surveys by Vesselinova et al. (2020)
and Guo et al. (2019), describe the latest ML approaches to solving the
CO tasks, in addition to possible applications of such methods. We note
that our survey is complementary to the existing ones as we focus on
RL approaches, provide necessary background and classification of the
RL models, and make a comparison between different RL methods and
existing solutions.

Paper organization. The remainder of this survey is organized as
follows. In Section 2, we provide a necessary background including the
formulation of CO problems, different encoders, and RL algorithms that
are used for solving CO with RL. In Section 3 we provide a classification
of the existing RL–CO methods based on the popular design choices
such as the type of RL algorithm. In Section 4 we describe the recent
RL approaches for the specific CO problems, providing the details
about the formulated MDPs as well as their influence on other works.
In Section 5 we make a comparison between the RL–CO works and
the existing traditional approaches. We conclude and provide future
directions in Section 6.

2. Background

In this section, we provide definitions of combinatorial problems,
state-of-the-art algorithms and heuristics that solve these problems.
We also describe machine learning models that encode states of CO
problems for an RL agent. Finally, we categorize popular RL algorithms
that have been employed recently for solving CO problems.
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Fig. 1. Solving a CO problem with the RL approach requires formulating MDP. The environment is defined by a particular instance of CO problem (e.g. Max-Cut problem).
States are encoded with a neural network model (e.g. every node has a vector representation encoded by a graph neural network). The agent is driven by an RL algorithm
(e.g. Monte-Carlo Tree Search) and makes decisions that move the environment to the next state (e.g. removing a vertex from a solution set).

2.1. Combinatorial optimization problems

We start by considering mixed-integer linear programs (MILP) – a
constrained optimization problem, to which many practical applica-
tions can be reduced. Several industrial optimizers (e.g. Cplex, 2009;
Gleixner et al., 2017; Gurobi Optimization, 2020; The Sage Developers,
2020; Makhorin, 2012; Schrage, 1986) exist that use a branch-and-
bound technique to solve the MILP instance.

Definition 3 (Mixed-Integer Linear Program (MILP) (Wolsey, 1998)). A
mixed-integer linear program is an optimization problem of the form

argmin
x

�
cÒx  Ax f b, 0 f x, x À Zp ù Rn*p� ,

where c À Rn is the objective coefficient vector, A À Rmùn is the
constraint coefficient matrix, b À Rm is the constraint vector, and p f n
is the number of integer variables.

Next, we provide formulations of the combinatorial optimization
problems, their time complexity, and the state-of-the-art algorithms for
solving them.

Definition 4 (Traveling Salesman Problem (TSP)). Given a complete
weighted graph G = (V ,E), find a tour of minimum total weight, i.e. a
cycle of minimum length that visits each node of the graph exactly
once.

TSP is a canonical example of a combinatorial optimization prob-
lem, which has found applications in planning, data clustering, genome
sequencing, etc. (Applegate et al., 2006). TSP problem is NP-hard (Pa-
padimitriou and Steiglitz, 1998), and many exact, heuristic, and ap-
proximation algorithms have been developed, in order to solve it.
The best known exact algorithm is the Held–Karp algorithm (Held
and Karp, 1962). Published in 1962, it solves the problem in time
O(n22n), which has not been improved in the general setting since
then. TSP can be formulated as a MILP instance (Dantzig et al.,
1954; Miller et al., 1960), which allows one to apply MILP solvers,
such as Gurobi (Gurobi Optimization, 2020), in order to find the

exact or approximate solutions to TSP. Among them, Concorde (Ap-
plegate et al., 2006) is a specialized TSP solver that uses a combina-
tion of cutting-plane algorithms with a branch-and-bound approach.
Similarly, an extension of the Lin–Kernighan–Helsgaun TSP solver
(LKH3) (Helsgaun, 2017), which improves the Lin–Kernighan algo-
rithm (Lin and Kernighan, 1973), is a tour improvement method
that iteratively decides which edges to rewire to decrease the tour
length. More generic solvers that avoid local optima exist such as
OR-Tools (Perron and Furnon, 2019) that tackle vehicle routing prob-
lems through local search algorithms and metaheuristics. In addi-
tion to solvers, many heuristic algorithms have been developed, such
as Christofides–Serdyukov algorithm (Christofides, 1976; van Bevern
and Slugina, 2020), the Lin–Kernighan–Helsgaun heuristic (Helsgaun,
2000), 2-OPT local search (Mersmann et al., 2012). (Applegate et al.,
2006) provides an extensive overview of various approaches to TSP.

Definition 5 (Maximum Cut Problem (Max-Cut)). Given a graph G =
(V ,E), find a subset of vertices S œ V that maximizes a cut C(S,G) =≥

iÀS,jÀV ‰S wij where wij À W is the weight of the edge-connecting
vertices i and j.

Max-Cut solutions have found numerous applications in real-life
problems including protein folding (Perdomo-Ortiz et al., 2012), finan-
cial portfolio management (Elsokkary et al., 2017), and finding the
ground state of the Ising Hamiltonian in physics (Barahona, 1982).
Max-Cut is an NP-complete problem (Karp, 1972), and, hence, does not
have a known polynomial-time algorithm. Approximation algorithms
exist for Max-Cut, including deterministic 0.5-approximation (Mitzen-
macher and Upfal, 2005; Gonzalez, 2007) and randomized 0.878-
approximation (Goemans and Williamson, 1995). Industrial solvers can
be used to find a solution by applying the branch-and-bound routines.
In particular, Max-Cut problem can be transformed into a quadratic un-
constrained binary optimization problem and solved by CPLEX (Cplex,
2009), which takes within an hour for graph instances with hundreds
of vertices (Barrett et al., 2020). For larger instances several heuristics
using the simulated annealing technique have been proposed that could
scale to graphs with thousands of vertices (Yamamoto et al., 2017;
Tiunov et al., 2019; Leleu et al., 2019).
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Minimum Vertex Cover  
Find smallest vertex subset such that each edge is covered

2-Approximation: 
Greedily add vertices of edge 
with max degree sum
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Given a graph optimization problem !
and a distribution " of problem instances, 
can we learn better greedy heuristics that 

generalize to unseen instances from #?

~	#

Dai & Khalil et al., Learning Combinatorial Optimization Algorithms over Graphs. NeurIPS 2017.
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Learning Greedy Algorithms

Given a graph optimization problem P and a distribu-
tion D over problem instances, can we learn better greedy
heuristics that generalize to unseen instances from D?

Problem Minimum Vertex Cover Maximum Cut Traveling Salesman Problem

Domain Social network snapshots Spin glass models Package delivery

Greedy operation Insert nodes into cover Insert nodes into subset Insert nodes into sub-tour

Elias B. Khalil Towards Tighter Integration of ML and DO March 12, 2018 33 / 53

Given: graph problem, family of graphs 
Learn: a scoring function to guide a greedy algorithm
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Repeat until all edges are covered: 
1. Compute node scores  
2. Select best node w.r.t. score 
3. Add best node to partial sol.

Partial Solution 

Scoring function         Q-function≡
Select best node         Greedy Policy≡

Partial solution           State≡
Greedy Algorithm Reinforcement Learning
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• Action value function: !"($! , &; Θ)
• Estimate of goodness of vertex ! in state "!

• Representation of *
• A feature vector that describes ! in state "!
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• Representation of *: Feature engineering
• Degree, 2-hop neighborhood size, other centrality measures…
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• Action value function: !"($! , &; Θ)
• Estimate of goodness of vertex ! in state "!

• Representation of *: Feature engineering
• Degree, 2-hop neighborhood size, other centrality measures…

PROBLEMS
1- Task-specific engineering needed
2- Hard to tell what is a good feature
3- Difficult to generalize across diff. graph sizes
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= Q(St, v; Θ)
v

St = { }

Scoring Function: Need to represent node with a feature vector first
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= Q(St, v; Θ)
v

St = { }

Scoring Function: Need to represent node with a feature vector first
Problem: Not clear what good node features are!
Solution: Parametrize a Graph Neural Network with parameters Θ

SOLUTION
1- No feature engineering needed
2- Features’ parameters trained to be good
3- Can handle different graph sizes
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Reinforcement Learning Algorithm

that at step t+ n, the tuple (St, at, Rt,t+n, St+n) is added to E, with Rt,t+n =
P

n�1
i=0 r(St+i, at+i).

Instead of performing a gradient step in the loss of the current sample as in (6), stochastic gradient
descent updates are performed on a random sample of tuples drawn from E.
It is known that off-policy reinforcement learning algorithms such as Q-learning can be more sample
efficient than their policy gradient counterparts [9]. This is largely due to the fact that policy gradient
methods require on-policy samples for the new policy obtained after each parameter update of the
function approximator.

5 Experimental Evaluation

Algorithm 1 Q-learning for the Greedy Algorithm
1: Initialize experience replay memory M to capacity N

2: for episode e = 1 to L do
3: Draw graph G from distribution D
4: Initialize the state to empty S1 = ()
5: for step t = 1 to T do

6: vt =

⇢
random node v 2 St, w.p. ✏
argmax

v2St
bQ(h(St), v;⇥), otherwise

7: Add vt to partial solution: St+1 := (St, vt)
8: if t � n then
9: Add tuple (St�n, vt�n, Rt�n,t, St) to M

10: Sample random batch from B
iid.⇠ M

11: Update ⇥ by SGD over (6) for B
12: end if
13: end for
14: end for
15: return ⇥

Instance generation. To evaluate the proposed method against other approximation/heuristic algo-
rithms and deep learning approaches, we generate graph instances for each of the three problems.
For the MVC and MAXCUT problems, we generate Erdős-Renyi (ER) [10] and Barabasi-Albert
(BA) [11] graphs which have been used to model many real-world networks. For a given range on the
number of nodes, e.g. 50-100, we first sample the number of nodes uniformly at random from that
range, then generate a graph according to either ER or BA. For the two-dimensional TSP problem,
we use an instance generator from the DIMACS TSP Challenge [12] to generate uniformly random
points in the 2-D grid, or clustered points in the 2-D grid. We refer the reader to the Appendix D.1 for
complete details on instance generation. We have also tackled the Set Covering Problem, for which the
description and results are deferred to Appendix B.
Structure2Vec Deep Q-learning. For our method, S2V-DQN, we use the graph representations and
hyperparameters described in Appendix D.4. The hyperparameters are selected via preliminary results
on small graphs, and then fixed for large ones. Note that for TSP, where the graph is fully-connected,
we build the K-nearest neighbor graph (K = 10) to scale up to large graphs. For MVC, where we train
the model on graphs with up to 500 nodes, we use the model trained on small graphs as initialization
for training on larger ones. We refer to this trick as ‘pre-training’, which is illustrated in Figure D.2.
Pointer Networks with Actor-Critic. We compare our method to an RNN-based method which does
not make full use of graph structure [3]. We implement and train their algorithm (PN-AC) for all
three problems. The original model only works on the Euclidian TSP problem, where each node is
represented by its (x, y) coordinates, and is not designed for problems with graph structure. To handle
other graph problems, we describe each node by its adjacency vector instead of coordinates. To handle
different graph sizes, we use a singular value decomposition (SVD) to obtain a rank-8 approximation
for the adjacency matrix, and use the low-rank embeddings as inputs to the pointer network.
Baseline Algorithms. Besides the PN-AC, we also include powerful approximation or heuristic
algorithms from the literature. These algorithms are specifically designed for each type of problem:

• MVC: MVCApprox iteratively selects an uncovered edge and adds both of its endpoints [13]. We
designed a stronger variant, called MVCApprox-Greedy, that greedily picks the uncovered edge with
maximum sum of degrees of its endpoints. Both algorithms exhibit a 2-approximation guarantee.

• MAXCUT: We include MaxcutApprox, which maintains the cut set (S, V \ S) and moves a node
from one side to the other side of the cut if that operation results in cut weight improvement [14].

6

Sample graph instance

Explore or 
Exploit according to current policy
Update state

Optimize model parameters

!: model parameters
Depend on vertex features

4 Training: Q-learning
We show how reinforcement learning is a natural framework for learning the evaluation function
bQ. The definition of the evaluation function bQ naturally lends itself to a reinforcement learning (RL)
formulation [6], and we will use bQ as a model for the state-value function in RL. We note that we
would like to learn a function bQ across a set of m graphs from distribution D, D = {Gi}mi=1, with
potentially different sizes. The advantage of the graph embedding parameterization in our previous
section is that we can deal with different graph instances and sizes in a unified way.

4.1 Reinforcement learning formulation
We will set up the states, actions and rewards in the reinforcement learning framework as follows:
1. States: a state S is a sequence of actions (nodes) on a graph G. Since we have already represented

nodes in the tagged graph with their embeddings, the state is a vector in p-dimensional space,P
v2V

µv. It is easy to see that this embedding representation of the state can be used across
different graphs. The terminal state bS will depend on the problem at hand;

2. Transition: transition is deterministic here, and corresponds to tagging the node v 2 G that was
selected as the last action with feature xv = 1;

3. Actions: an action v is a node of G that is not part of the current state S. Similarly, we will
represent actions as their corresponding p-dimensional node embedding µv, and such a definition
is applicable across graphs of various sizes;

4. Rewards: the reward function r(S, v) at state S is defined as the change in the cost function after
taking action v and transitioning to a new state S0 := (S, v). That is,

r(S, v) = c(h(S0), G)� c(h(S), G), (5)

and c(h(;), G) = 0. As such, the cumulative reward R of a terminal state bS coincides exactly with
the objective function value of the bS, i.e. R(bS) =

P|bS|
i=1 r(Si, vi) is equal to c(h(bS), G);

5. Policy: based on bQ, a deterministic greedy policy ⇡(v|S) := argmax
v02S

bQ(h(S), v0) will be
used. Selecting action v corresponds to adding a node of G to the current partial solution, which
results in collecting a reward r(S, v).

Table 1 shows the instantiations of the reinforcement learning framework for the three optimization
problems considered herein. We let Q⇤ denote the optimal Q-function for each RL problem. Our graph
embedding parameterization bQ(h(S), v;⇥) from last section will then be a function approximation
model for it, which will be learned via n-step Q-learning.
Table 1: Definition of reinforcement learning components for each of the three problems considered.

Problem State Action Helper function Reward Termination
MVC subset of nodes selected so far add node to subset None -1 all edges are covered
MAXCUT subset of nodes selected so far add node to subset None change in cut weight cut weight cannot be improved
TSP partial tour grow tour by one node Insertion operation change in tour cost tour includes all nodes

4.2 Learning algorithm
In order to perform end-to-end learning of the parameters in bQ(h(S), v;⇥), we use a combination
of n-step Q-learning [6] and fitted Q-iteration [7], as illustrated in Algorithm 1. We use the term
episode to refer to a complete sequence of node additions starting from an empty solution, and until
termination; a step within an episode is a single action (node addition).
Standard (1-step) Q-learning updates the function approximator’s parameters at each step of an
episode by performing a gradient step to minimize the squared loss:

(y � bQ(h(St), vt;⇥))2, (6)

where y = �maxv0 bQ(h(St+1), v0;⇥) + r(St, vt) for a non-terminal state St. The n-step Q-learning
helps deal with the issue of delayed rewards, where the final reward of interest to the agent is only
received far in the future during an episode. In our setting, the final objective value of a solution is only
revealed after many node additions. As such, the 1-step update may be too myopic. A natural extension
of 1-step Q-learning is to wait n steps before updating the approximator’s parameters, so as to collect a
more accurate estimate of the future rewards. Formally, the update is over the same squared loss (6), but
with a different target, y =

P
n�1
i=0 r(St+i, vt+i) + �maxv0 bQ(h(St+n), v0;⇥). The fitted Q-iteration

approach has been shown to result in faster learning convergence when using a neural network as
a function approximator [7, 8], a property that also applies in our setting. Instead of updating the
Q-function sample-by-sample as in Equation (6), the fitted Q-iteration approach uses experience
replay to update the function approximator with a batch of samples from a dataset E, rather than the
single sample being currently experienced. The dataset E is populated during previous episodes, such
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VERTEX COVER MAX-CUT

TSP

Approximation  
Ratio

Code: https://
github.com/Hanjun-

Dai/graph_comb_opt 

https://github.com/Hanjun-Dai/graph_comb_opt
https://github.com/Hanjun-Dai/graph_comb_opt
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such that each 
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Vertex Cover  



Data-Driven Algorithm Design

41

automatically discovers 
novel search strategies

Learned Heuristic Classical Heuristic

Find smallest 
vertex subset 
such that each 

edge is covered 

Minimum  
Vertex Cover  



42



42

Takeaways 
‣ Reinforcement Learning tailors greedy search to your 

instances 
‣ Learn features jointly with greedy policy 
‣ Human priors encoded via (greedy) meta-algorithm 
‣ Interesting, novel strategies emerge 
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